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Abstract. Explicit examples of Osserman 4-manifolds with exactly two dis-
tinct eigenvalues of the Jacobi operators, α and β = 4α 6= 0, are given. The
former has multiplicity two and is a double root of the minimal polynomial of
the Jacobi operators.

1. Introduction

To a large extent, the geometry of a pseudo-Riemannian manifold (M, g) is the
study of the curvature R ∈ ⊗4T ∗M which is defined by the Levi-Civita connection
∇. Since the whole curvature tensor is difficult to handle, the investigation usually
focus on different objects whose properties allow us to recover the curvature tensor.
Different functions like the sectional curvature or natural operators associated to
the curvature are typical examples, being the Jacobi operator the most natural and
widely investigated (cf. [13]). A pseudo-Riemannian manifold (M, g) is said to be
Osserman if the eigenvalues of the Jacobi operators are constant on the unit pseudo-
sphere bundles S±(TM). Any two-point homogeneous space is Osserman and the
converse is true in the Riemannian (dim M 6= 16) [7], [19], [20] and Lorentzian [2], [9]
settings. However, there exist many nonsymmetric Osserman pseudo-Riemannian
metrics in other signatures (cf. [10], [13]). In particular, the 4-dimensional globally
Osserman manifolds are classified except in signature (− − ++) where, besides
the results in [4], [12] a description of all (− − ++)-Osserman metrics is not yet
complete.

Since the eigenvalue structure does not completely determine a self-adjoint op-
erator in the indefinite setting, a pseudo-Riemannian manifold is called Jordan-
Osserman if the Jordan normal form of the Jacobi operators is constant on S±(TM).
Clearly Jordan-Osserman implies Osserman, but the converse is not true even in
dimension four, where both conditions become equivalent at the algebraic setting
(i.e., an algebraic curvature tensor in dimension 4 is Osserman if and only if it
is Jordan-Osserman, but there exist 4-manifolds which are globally Osserman but
not globally Jordan-Osserman [10]). The structure of a Jordan-Osserman algebraic
curvature tensor strongly depends on the signature (p, q) of the metric tensor. In-
deed, it has been shown in [15] that the spacelike Jacobi operators of a spacelike
Jordan-Osserman algebraic curvature tensor are necessarily diagonalizable when-
ever p < q, but they can be arbitrarily complicated in the neutral case (p = q) [16].
However the fact that all known examples of (pointwise) Osserman metrics have
either diagonalizable or nilpotent Jacobi operators (see [1], [10], [13], [17] and the
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references therein), suggested that this should be true in the general case, which
was conjectured by several authors. The purpose of this note is to point out the
existence of Osserman metrics whose Jacobi operators are neither diagonalizable
nor nilpotent, thus showing that the structure of Osserman metrics in indefinite
signature is subtler than expected.

2. The examples

Let M = R4 with usual coordinates (x1, x2, x3, x4). For any arbitrary real valued
function f(x4), define a metric by

(2.1)

g = dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2

+(4kx2
1 − 1

4kf(x4)2)dx3 ⊗ dx3 + 4kx2
2dx4 ⊗ dx4

+(4kx1x2 + x2f(x4)− 1
4kf ′(x4))(dx3 ⊗ dx4 + dx4 ⊗ dx3),

where k is a nonzero constant. Then the Levi–Civita connection is determined by
the Christoffel symbols as follows

(2.2)

Γ1
13 = −Γ3

33 = 4kx1,

Γ2
13 = Γ1

14 = −Γ3
34 = 1

2Γ2
24 = − 1

2Γ4
44 = 2kx2,

Γ2
23 = Γ1

24 = −Γ4
34 = 1

2 (4kx1 + f(x4)),

Γ1
33 = 16k2x3

1 − x1f(x4)2,

Γ2
33 = x1(16k2x1x2 − f ′(x4)) + f(x4)(4kx1x2 + f ′(x4)

4k ),

Γ1
34 = 16k2x2

1x2 + 4kx1x2f(x4)− 1
2x1f

′(x4)− 3f(x4)f ′(x4)
8k ,

Γ2
34 = 1

2x2(32k2x1x2 + 8kx2f(x4)− f ′(x4)),

Γ1
44 = 16k2x1x

2
2 + 4kx2

2f(x4)− f ′′(x4)
4k , Γ2

44 = 16k2x3
2.

A straightforward calculation from (2.2) shows that the curvature tensor, taken
with the sign convention R(X, Y ) = ∇[X,Y ] − [∇X ,∇Y ], is given by

(2.3)

R1313 = R2424 = −4k,

R1324 = R1423 = −2k,

R1334 = kx2(4kx1 + f(x4)),

R1434 = 4k2x2
2,

R2334 = f(x4)2

4 − 4k2x2
1,

R2434 = f ′(x4)
2 − kx2(4kx1 + f(x4)),

R3434 = f ′(x4)2

4k + 2kx1x2f
′(x4)− 2kx2

2f(x4)2 − x1f
′′(x4)

− f(x4)
(

8k2x1x
2
2 − 5

2x2f
′(x4)− f ′′(x4)

4k

)
.

Now, we have

Theorem 2.1. For any function f(x4), the metric (2.1) is Osserman of signature
(2, 2) with eigenvalues {0, 4k, k, k}. Moreover, the Jacobi operators are diagonaliz-
able if and only if

(2.4) 24kf(x4)f ′(x4)x2 − 12kf ′′(x4)x1 + 3f(x4)f ′′(x4) + 4f ′(x4)2 = 0.
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Otherwise, k is a double root of the minimal polynomial of the Jacobi operators and
(M, g) is Jordan-Osserman on the open set where (2.4) does not hold.

Proof. The eigenvalues of the Jacobi operator of an Osserman metric change
sign when passing from timelike to spacelike directions. Thus, for the purpose of
studying the Osserman property, it is convenient to consider the operator JR(X) =
g(X, X)−1RX associated to each nonnull vector X, whose eigenvalues must be
constant if and only if (M, g) is Osserman. Let X =

∑4
i=1 αi∂i be a nonnull

vector, where {∂i} denotes the coordinate basis. The associated Jacobi operator
RX = R(X, · )X can be expressed with respect to the coordinate basis {∂i} as

(2.5) RX =




a11 a12 a13 a14

a21 a22 a23 a24

−4kα2
3 −4kα3α4 a33 a34

−4kα3α4 −4kα2
4 a43 a44




with
a11 = 5kx2f(x4)α3α4 − f(x4)2α2

3

+ 2k(2α1α3 + α2α4 + 2k(4x2
1α

2
3 + 5x1x2α3α4 + x2

2α
2
4))− α3α4f

′(x4),

a12 = 1
4α4(12kx2f(x4)α4 − 3f(x4)2α3

+ 8k(α1 + 6kx1(x1α3 + x2α4))− 2α4f
′(x4)),

a13 = 1
16k

(
f(x4)2α3(16kα1 + α4f

′(x4))

+ 4f(x4)α4(7kx2α4f
′(x4)− 16k2x2α1 + α4f

′′(x4))

− 2(4kα4(2kx1(x1α3 + x2α4)− α1)f ′(x4)

−3α2
4f
′(x4)2 + 8k(4kα1(α1 + 4kx1(x1α3 + x2α4)) + x1α

2
4f
′′(x4)))

)
,

a14 = − 1
16k

(
f(x4)2α3(α3f

′(x4)− 12kα2)

+ 4f(x4)(4k2x2(α1α3 + 3α2α4) + 7kx2α3α4f
′(x4) + α3α4f

′′(x4))

+ 2(−4k(α1α3 + α2α4 + 2kx1α3(x1α3 + x2α4))f ′(x4)

+ 3α3α4f
′(x4)2 + 8k(4k(3kx1α2(x1α3 + x2α4)

+ α1(α2 + kx2(x1α3 + x2α4))) −x1α3α4f
′′(x4)))) ,

a21 = α3(3kx2f(x4)α3 + 2k(α2 + 6kx2(x1α3 + x2α4))− α3f
′(x4)),

a22 = 2kα1α3 − 1
4f(x4)2α2

3 + 4k2x2
1α

2
3 + 4kα2α4 + 5kf(x4)x2α3α4

+ 20k2x1x2α3α4 + 16k2x2
2α

2
4 − 3

2α3α4f
′(x4),

a23 = − 1
4k (4k(kx2α4(x1α3 + x2α4)− α1α3)f ′(x4)

− kf(x4)2α2α3 + α3α4f
′(x4)2 + f(x4)(4k2x2(3α1α3 + α2α4)

+ 9kx2α3α4f
′(x4) + α3α4f

′′(x4))

+ 4k(4k(kx1α2(x1α3 + x2α4) + α1(α2 + 3kx2(x1α3 + x2α4)))

−x1α3α4f
′′(x4))) ,

a24 = 1
4k

(
2kα3(3α2 + 2kx2(x1α3 + x2α4))f ′(x4) + α2

3f
′(x4)2

+ f(x4)α3(−16k2x2α2 + 9kx2α3f
′(x4) + α3f

′′(x4))

−4k(4kα2(α2 + 4kx2(x1α3 + x2α4)) + x1α
2
3f
′′(x4))

)
,
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a33 = k(4α1α3 + x2f(x4)α3α4 + 2α4(α2 + 2kx2(x1α3 + x2α4))),

a34 = −kα3(−2α2 + x2f(x4)α3 + 4kx2(x1α3 + x2α4)),

a43 = 1
4α4(f(x4)2α3−4kx2f(x4)α4 + 2(4k(α1−2kx1(x1α3 + x2α4)) + α4f

′(x4))),

a44 = kx2f(x4)α3α4 − 1
4f(x4)2α2

3

+ 2k(α1α3 + 2(α2α4 + kx1α3(x1α3 + x2α4)))− 1
2α3α4f

′(x4).

A direct computation of the characteristic polynomial of the Jacobi operators
(2.5), using the expressions above, shows that pλ(JR(X)) = λ(λ− 4k)(λ− k)2, and
therefore (2.1) is Osserman with eigenvalues {0, 4k, k, k}.

Now, in order to analyze the diagonalizability of the Jacobi operators, we con-
sider the minimal polynomials mλ(JR(X)). It follows after some calculations that

JR(X) · (JR(X)−4kId) · (JR(X)−kId) =
k

4
g(X, X)−1 Ξ




0 0 −α2
4 α3α4

0 0 α3α4 −α2
3

0 0 0 0
0 0 0 0




where
Ξ = 3f(x4)(8kx2f

′(x4) + f ′′(x4)) + 4(f ′(x4)2 − 3kx1f
′′(x4)),

which shows that (2.4) is the necessary and sufficient condition for diagonalizability
of the Jacobi operators. Finally in the open set where Ξ does not vanish (M, g) is
Jordan-Osserman and k is a double root of the minimal polynomials mλ(JR(X)).¤

Observe that the eigenvalues of the Jacobi operator of a pseudo-Riemannian
Osserman metric change sign from spacelike to timelike vectors, and thus they are
all zero for null vectors (cf. [10], [13]), which shows that any Osserman metric is
null Osserman.

Theorem 2.2. For any function f(x4), the metric (2.1) is null Osserman with
two-step nilpotent null Jacobi operators.

Proof. First of all, observe that a vector U =
∑4

i=1 αi∂i is null if and only if

2α1α3 + 2α2α4

+ α2
3(4kx2

1 − f(x4)2

4k ) + α3α4(2f(x4)x2 + 8kx1x2 − f ′(x4)
2k ) + 4kx2

2α
2
4 = 0.

Now, a tedious but straightforward calculation from (2.5) shows that

R2
U = g(U,U)




b11 b12 b13 b14

b21 b22 b23 b24

−16k2α2
3 −16k2α3α4 b33 b34

−16k2α3α4 −16k2α2
4 b43 b44


 ,

where
b11=k(16kα1α3 − 4f(x4)2α2

3 + 17kf(x4)x2α3α4

+2k(α2α4 + 2k(x1α3 + x2α4)(16x1α3 + x2α4))− 3α3α4f
′(x4)),

b12=k
4 α4(56kα1 − 15(f(x4) + 4kx1)((f(x4)− 4kx1)α3 − 4kx2α4)− 10α4f

′(x4)),

b13=−16k2α2
1 + k

2 α1(8(f(x4) + 4kx1)((f(x4)− 4kx1)α3 − 4kx2α4) + 3α4f
′(x4))

+ 1
16α4(f ′(x4)(5f(x4)2α3 + 44kf(x4)x2α4 − 80k2x1(x1α3 + x2α4)

+14α4f
′(x4)) + 8(f(x4)− 4kx1)α4f

′′(x4)),
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b14= 1
16 (−960k3x2

1α2α3 − 960k3x1x2α2α4 + 80k2x2
1α

2
3f
′(x4) + 40kα2α4f

′(x4)

+80k2x1x2α3α4f
′(x4)− 14α3α4f

′(x4)2 − 5f(x4)2α3(−12kα2 + α3f
′(x4))

+8kα1(−32kα2 − 2kx2((f(x4) + 4kx1)α3 + 4kx2α4) + 3α3f
′(x4))

+32kx1α3α4f
′′(x4) + 4f(x4)α4(−kx2(60kα2 + 11α3f

′(x4))− 2α3f
′′(x4))),

b21=kα3(14kα2 + 15kx2((f(x4) + 4kx1)α3 + 4kx2α4)− 5α3f
′(x4)),

b22=k
4 (8kα1α3 − f(x4)2α2

3 + 68kf(x4)x2α3α4

+16k(4α2α4 + k(x1α3 + x2α4)(x1α3 + 16x2α4))− 22α3α4f
′(x4)),

b23= 1
4 (kf(x4)2α2α3 − 16k3x2

1α2α3 − 16k3x1x2α2α4 − 4kα2α4f
′(x4)

−20k2x1x2α3α4f
′(x4)− 20k2x2

2α
2
4f
′(x4)− α3α4f

′(x4)2 + 4kα1(−16kα2

−15kx2((f(x4) + 4kx1)α3 + 4kx2α4) + 5α3f
′(x4)) + 8kx1α3α4f

′′(x4)

+f(x4)α4(−kx2(4kα2 + 21α3f
′(x4))− 2α3f

′′(x4))),

b24= 1
4 (−64k2α2

2 + 2kα2(−32kx2((f(x4) + 4kx1)α3 + 4kx2α4) + 13α3f
′(x4))

+α3(f ′(x4)(kx2(21f(x4)α3 + 20k(x1α3 + x2α4)) + α3f
′(x4))

+2(f(x4)− 4kx1)α3f
′′(x4))),

b33=k(16kα1α3 + α4(2kα2 + kx2((f(x4) + 4kx1)α3 + 4kx2α4) + α3f
′(x4))),

b34=−kα3(−14kα2 + kx2((f(x4) + 4kx1)α3 + 4kx2α4) + α3f
′(x4)),

b43=−k
4 α4(−56kα1 − (f(x4) + 4kx1)((f(x4)− 4kx1)α3 − 4kx2α4)− 6α4f

′(x4)),

b44=k
4 (8kα1α3 − f(x4)2α2

3 + 4kf(x4)x2α3α4

+16k(4α2α4 + kx1α3(x1α3 + x2α4))− 6α3α4f
′(x4)).

As U is a null vector we clearly have R2
U = 0. Moreover, it follows from (2.5)

that if RU = 0 then α3 = α4 = 0 and the Jacobi operator reduces to

(2.6) RU = −4k




0 0 α2
1 α1α2

0 0 α1α2 α2
2

0 0 0 0
0 0 0 0




which shows that RU vanishes if and only if U = 0. This proves that (M, g) is null
Osserman with two-step nilpotent null Jacobi operators. ¤

Remark 2.3. Note that although the null Jacobi operators are two-step nilpotent,
their Jordan normal form is not necessarily constant on the null cone since the cor-
responding minimal polynomials may admit one or two double roots. For instance,
U = α1∂1 + α2∂2 is a null vector whose associated Jacobi operator is given by (2.6)
and hence its Jordan normal form is given by




0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


 .

On the other hand V = ∂3 is a null vector at those points (0, x2, x3, 0) for any
function f(x4) with f(0) = 0. Moreover, in such a case the associated Jacobi
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operator satisfies

(RV )(0,x2,x3,0) =




0 0 0 0

−f ′(0) 0 0 f ′(0)2

4k
−4k 0 0 0

0 0 0 0


 ,

and thus its Jordan normal form is given by



0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0




whenever f ′(0) 6= 0. Hence the null Osserman and the null Jordan-Osserman con-
ditions are not equivalent at the algebraic level for (−−++)-metrics, in opposition
to the nonnull Osserman conditions. The above example shows that, although
the algebraic Osserman condition implies the null Osserman condition, there exist
Jordan-Osserman algebraic curvature tensors which are not null Jordan-Osserman.

A pseudo-Riemannian manifold is said to be Szabó if the covariant derivative
of the Jacobi operators (∇XR)(X, · )X has constant eigenvalues on S±(TM) [17].
Any Szabó manifold is locally symmetric in the Riemannian [21] and the Lorentzian
[18] setting but the higher signature case supports examples with nilpotent Szabó
operators (cf. [17] and the references therein). Next we will show that there exist
four-dimensional Szabó metrics where the degree of nilpotency of the associated
Szabó operators changes at each point depending on the direction, and thus the
Szabó and the Jordan-Szabó algebraic conditions are not equivalent in dimension
four, in opposition to the Jacobi operator.

Theorem 2.4. For any function f(x4), the metric (2.1) is Szabó of signature (2, 2)
with zero eigenvalues. Moreover, the minimal polynomial of the Szabó operators
(∇XR)(X, · )X depends on the direction X at each point and thus metrics (2.1)
are not pointwise Jordan-Szabó.

Proof. Let X =
∑4

i=1 αi∂i be a nonnull vector as in the proof of Theorem 2.1.
Then the associated Szabó operator, when expressed in the coordinate basis takes
the form

(2.7) ∇XRX =

(
A B
0 tA

)
, A = Ψ

(
α3α4 α2

4
−α2

3 −α3α4

)
,

where Ψ = 2α3f(x4)f ′(x4) + α4f
′′(x4). Hence the characteristic polynomial of the

Szabó operators is pλ(∇XRX) = λ4 (independently of the 2× 2-matrix B).
Since the degree of nilpotency depends on B, in order to show that the Szabó and

Jordan-Szabó algebraic conditions are not equivalent, we make the special choice
f(x4) = x4. Now, if X and Y are the unit vectors in the direction of ∂1 + ∂3 and
∂2 + ∂4, respectively, one has

∇XRX =




0 0 0 2(εX − 1)x4

−2x4 0 2x4 4(x1 − x4
8k + x2x4(8kx1 + x4))

0 0 0 −2x4

0 0 0 0


 ,
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and

∇Y RY =




0 0 6x2 + 2(3εY − 5)x4 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

where εZ = g(Z, Z) = ±1. This shows that ∇XRX is three-step nilpotent at most
points while ∇Y RY is two-step nilpotent. ¤

Remark 2.5. Let Gr+
2 (M) be the Grassmanian of oriented 2-planes in the tangent

bundle. For any nondegenerate 2-plane π the skew-symmetric curvature operator

R(π) =
∣∣〈x, x〉〈y, y〉 − 〈x, y〉2∣∣−1/2

R(x, y)

is a skew-adjoint operator which is independent of the oriented basis {x, y} of
π. (M, g) is said to be Ivanov Petrova (IP for short) if the eigenvalues of R(π)
are constant on Gr+

2 (M) (see [13] and the references therein for more information
on IP manifolds). Now, an easy calculation shows that metrics (2.1) are not IP in
general. For instance, π = {∂3, ∂1} is a nondegenerate plane whose skew-symmetric
operator satisfies

R(π)=




4k 0 16k2x2
1 − f(x4)2 3kx2(4kx1 + f(x4))− 1

2f ′(x4)
0 2k 3kx2(4kx1 + f(x4))− f ′(x4) 8k2x2

2
0 0 −4k 0
0 0 0 −2k




and hence, it has constant eigenvalues {2k, 4k,−2k,−4k} independently of the func-
tion f(x4). On the other hand for any function f(x4) with f ′(0) 6= 0, it follows
that π = {∂3, ∂4} is a nondegenerate plane at the origin, whose skew-symmetric
operator satisfies

R(π) =

∣∣∣∣
k

f ′(0)

∣∣∣∣




0 f(0)2 − f(0)2f ′(0)
4k − 3f ′(0)2+2f(0)f ′′(0)

2k

0 2f ′(0) f ′(0)2+f(0)f ′′(0)
k 0

0 0 0 0
0 0 −f(0)2 −2f ′(0)




which has eigenvalues {0, 0, 2k,−2k}. This shows that metrics (2.1) are not IP at
the origin on planes of signature (−+) for any function f(x4) with f ′(0) 6= 0.

Note that for any metric (2.1) the eigenspace corresponding to the double eigen-
value k is of Lorentzian signature (see Remark 3.4), and thus the curvature tensor
at each point is completely determined by the diagonalizability of the Jacobi oper-
ator, independently of the function f(x4). In fact, at any point where the Jacobi
operators diagonalize (resp., are not diagonalizable) there exist orthonormal bases
where the (algebraic) curvature tensor is expressed in terms of the eigenvalues of the
Jacobi operators, independently of the function f(x4) (see [4], [10, Thm. 4.2.2]).

Next, observe that it is possible to give functions f(x4) satisfying f ′(0) 6=
0 and 3f(0)f ′′(0) + 4f ′(0)2 = 0 (see (2.4)) and therefore the Jacobi operators
are diagonalizable at the origin. Also, there exist functions with f ′(0) 6= 0 and
3f(0)f ′′(0) + 4f ′(0)2 6= 0 and hence with nondiagonalizable Jacobi operators at
the origin. Now, it follows from the eigenvalue structure of the skew-symmetric
curvature operators corresponding to the planes discussed above, that none of the
corresponding (algebraic) curvature tensors may be IP, thus showing that metrics
(2.1) are not IP at any point.
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3. Some observations

Remark 3.1. It was shown in [12] that the Jacobi operators of a locally symmetric
four-dimensional Osserman metric are either diagonalizable or two-step nilpotent.
Therefore, no metric (2.1) may be locally symmetric unless their Jacobi operators
diagonalize. Indeed, it follows after some calculations that the covariant derivative
of the curvature tensor vanishes at a point (x1, . . . , x4) if and only if

(i) f ′′(x4) = 0, (ii) f(x4)f ′(x4) = 0,

(iii) f ′(x4)2x1 = 0, (iv) 24kx2f
′(x4)2 + f ′′′(x4)(f(x4)− 4kx1) = 0.

Hence (R4, g) is locally symmetric if and only if the function f is constant, and thus
the Jacobi operators are diagonalizable from (2.4). Furthermore note from [3] that
any four-dimensional Jordan-Osserman manifold has isotropic covariant derivative
of the curvature, i.e., ‖∇R‖ = 0, although ∇R may be nonzero.

Remark 3.2. It follows from the work in [4] that any four-dimensional Osserman
algebraic curvature tensor is Jordan-Osserman. However the existence of Osserman
metrics which are not Jordan-Osserman was already pointed out in [11]. Indeed,
note that the Jordan normal form of the Jacobi operators (2.5) corresponding to
the metrics (2.1) changes from diagonalizable to nondiagonalizable according to
(2.4). Moreover, since 24kf(x4)f ′(x4)x2 − 12kf ′′(x4)x1 + 3f(x4)f ′′(x4) + 4f ′(x4)2

defines a polynomial on x1, x2, it follows that any metric (2.1), when considered as
globally defined in R4, changes its Jordan normal form, and thus, it is Osserman
but not Jordan-Osserman. However, they restrict to Jordan-Osserman metrics on
suitable open sets.

Remark 3.3. Since metrics (2.1) are not Jordan-Osserman in general, they are not
curvature homogeneous, and thus they cannot be locally homogeneous. Moreover,
even restricting to open sets where (2.1) defines a Jordan-Osserman metric (and
hence 0-curvature homogeneous) they are not necessarily locally homogeneous. In-
deed, for the special choice of f(x4) = x4, (R4, g) is Jordan-Osserman in the open
set 6kx2x4 6= −1. However, it is not locally homogeneous, since ∇R vanishes at
any point (0, 0, x3, 0) and it is different from zero at those points (0, 0, x3, x4) with
x4 6= 0, which shows that it is not 1-curvature homogeneous.

Remark 3.4. Different kinds of Osserman manifolds may share the same eigenvalue
structure. Indeed, the Jacobi operators of indefinite complex and paracomplex
space forms have the same spectrum as that of metrics (2.1). Moreover, a straight-
forward calculation shows that metrics (2.1) have exactly the same second, fourth
and sixth order scalar curvature invariants as the symmetric models. Recall that
the main difference between complex and paracomplex space forms from the point
of view of their Jacobi operators, is that the restriction of the metric to the sub-
space E4k(X) = span{X}⊕ker(JR(X)− 4kId) is definite in the complex case and
indefinite in the paracomplex setting [6]. Moreover observe that any metric (2.1)
induces a Lorentzian inner product on E4k, since the Jacobi operators are nondiag-
onalizable. Indeed, it follows from the expression of the Jacobi operator associated
to any non-null vector X =

∑
αi∂i that −α4∂1 + α3∂2 is a null eigenvector of

JR(X) corresponding to the double eigenvalue k.

Remark 3.5. Let Grk(TpM) be the Grassmannian of nondegenerate k-planes in
TpM of a pseudo-Riemannian manifold (M, g). For each E ∈ Grk(TpM), let J(E)
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denote the generalized Jacobi operator

J(E) = g(x1, x1)R(x1, · )x1 + · · ·+ g(xk, xk)R(xk, · )xk,

where {x1, . . . , xk} is an orthonormal basis for E. Then J(E) is independent of
the choice of orthonormal basis and (M, g) is said to be k-Osserman at p ∈ M
if the eigenvalues of J(E) counted with multiplicities are constant for every E ∈
Grk(TpM). Also, (M, g) is called globally k-Osserman if the characteristic polyno-
mial of J(E) is independent of E ∈ ⋃

p∈M Grk(TpM). Further note that there is
a certain kind of duality between the notions above since (M, g) is k-Osserman if
and only if it is (n− k)-Osserman, where n = dim M [14].

Now, it follows from the work in [5] that a four-dimensional metric is 1-Osserman
and 2-Osserman if and only if it is either of constant curvature or the Jacobi oper-
ators are two-step nilpotent. Therefore no metric (2.1) is Osserman of higher order
(see [13], [14] for more information on higher order Osserman manifolds).

Remark 3.6. Finally, in order to give some motivation for metrics (2.1), recall
that an specific feature of pseudo-Riemannian metrics is related to the local re-
ductibility/decomposability of such structures [23]. It is a fact that many striking
differences between the Riemannian and pseudo-Riemannian situations come from
the existence of parallel degenerate distributions, which do not lead to local decom-
positions of the manifold. It was shown by Walker [22] that any four-dimensional
metric equipped with a two-dimensional parallel degenerate distribution can be
locally expressed in adapted coordinates (x1, . . . , x4) by

(3.1) g =




0 0 1 0
0 0 0 1
1 0 a c
0 1 c b


 ,

for arbitrary functions a, b, c depending on the variables (x1, . . . , x4). Associated
to any Walker metric (3.1) there is a natural almost para-Hermitian structure J
(i.e., J2 = id, g(J ·, J ·) = −g(·, ·)) defined by

J∂1 = −∂1, J∂2 = ∂2, J∂3 = −a∂1 + ∂3, J∂4 = b∂2 − ∂4,

which is integrable (i.e., the corresponding ±1-eigenspaces define integrable distri-
butions) if and only if a2 = 0, b1 = 0, where here and henceforth the subscript means
partial derivative, i.e., hi = ∂

∂xi
h, for any function h depending on (x1, . . . , x4) and

i = 1, . . . , 4. Then, metrics (2.1) arise in the process of constructing para-Hermitian
Einstein structures. Indeed, it can be shown from the Einstein equations that the
para-Hermitian structure (g, J) is Einstein if and only if one of the following holds [8]
(i) The scalar curvature vanishes and the metric components are given by

(3.2)

a(x1, x2, x3, x4) = x1P (x3, x4) + γ(x3, x4),

b(x1, x2, x3, x4) = x2Q(x3, x4) + δ(x3, x4),

c(x1, x2, x3, x4) = x1α(x3, x4) + x2ξ(x3, x4) + η(x3, x4),

where P , Q, γ, δ, α, ξ and η are smooth functions satisfying

Pξ − ξ2 + 2ξ3 = 0, Qα− α2 + 2α4 = 0, αξ + P4 − ξ4 + Q3 − α3 = 0.
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(ii) If the scalar curvature is nonzero, then the metric is given by

(3.3)

a(x1, x2, x3, x4) = κ
2 x2

1 + x1P (x3, x4) + ξ(x3, x4),

b(x1, x2, x3, x4) = κ
2 x2

2 + x2Q(x3, x4) + η(x3, x4),

c(x1, x2, x3, x4) = 1
κ (P4(x3, x4) + Q3(x3, x4)) ,

for any smooth functions P (x3, x4), Q(x3, x4), ξ(x3, x4), η(x3, x4), or otherwise

(3.4)

a(x1, x2, x3, x4) = κ
3 x2

1 + x1P + 3
κ

(
PS − S2 + 2S3

)
,

b(x1, x2, x3, x4) = κ
3 x2

2 + x2Q + 3
κ

(
QT − T 2 + 2T4

)
,

c(x1, x2, x3, x4) = κ
3 x1x2 + x1T + x2S + 3

κ (ST + P4 − T3 + Q3 − S4) ,

for any smooth functions P (x3, x4), S(x3, x4), Q(x3, x4), T (x3, x4).
Now it follows that metrics (3.3) cannot be Osserman, while those Ricci-flat

metrics defined by (3.2) are Osserman with Jacobi operators either vanishing or
nilpotent. Moreover, metrics (2.1) are obtained as a special case of (3.4).
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